

Upgrade of STRmix[™] version 2.8 to version 2.9.1 for the Idaho State Police Laboratory (Fusion 5C 3500)

This document is a guide only. The Institute of Environmental Science & Research (ESR) has taken all reasonable measures to ensure that the information and data presented in this document is accurate and current. However, ESR makes no express or implied warranty regarding such information or data, and hereby expressly disclaims all legal liability and responsibility to persons or entities that use or access this document and its content. © 2022 Institute of Environmental Science and Research Limited (ESR)

STRmix[™] Implementation

This document describes the comparison of laboratory-specific parameters determined within STRmix[™] V2.8 and V2.9.1 for the Idaho State Police Crime Laboratory (hereafter ISP). It also describes the performance check of the adopted parameters. The current STRmix[™] parameters in use by ISP were determined for Fusion 5C data generated within the ISP Laboratory using 29 PCR cycles and separated using 3500 CE instrumentation with a single injection protocol in STRmix[™] V2.8.

STRmix[™] Parameters

There are a number of parameters that are not optimised by the MCMC in a STRmix[™] analysis. These parameters must be set by the user and are either determined by analysis of empirical data or modelled within STRmix[™] using the Model Maker function. The laboratory-specific parameters that are determined prior to use of STRmix[™] are:

- Analytical/detection thresholds,
- Stutter ratios,
- Drop-in parameters,
- Saturation threshold,
- Allelic and stutter peak height variance parameters, and
- Locus Specific Amplification Efficiency (LSAE) variance parameter.

Analytical thresholds, stutter ratios, drop-in parameters and saturation thresholds will not change between STRmix[™] V2.8 and V2.9.1 (unless these settings have been updated outside of STRmix[™], i.e. ATs in the analysis software have been reassessed).

Allelic and stutter peak height variance parameters and LSAE parameters should be recalculated in STRmix[™] 2.9.1 to determine if any difference is observed.

Peak height variance and LSAE using Model Maker

The 99 single-source Fusion 5C profiles of varying quality originally submitted by ISP for Model Maker in STRmix[™] V2.8 were re-run in STRmix[™] V2.9.1. These profiles had also been previously run in STRmix[™] V2.8 as part of ISP's internal validation of STRmix[™]. No significant difference in variance distributions was found. The Model Maker comparisons can be found in Figure 1. ISP's kit settings determined in V2.8 are appropriate for use in STRmix V2.9.1.

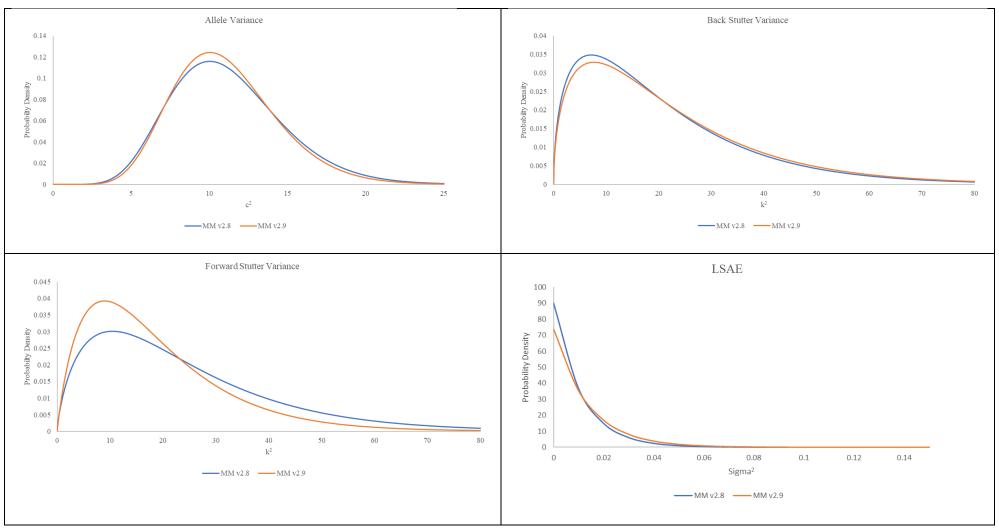


Figure 1: Comparisons of variance distributions for the Fusion 5C data

The diagnostics output by Model Maker were reviewed. In particular, the correlation plots were examined and assessed. These plots are in the Model Maker Reports appended to this document. No obvious correlation was observed (the desired result).

STRmix[™] V2.9.1 kit settings

The recommended STRmix[™] V2.9.1 default parameters for the interpretation of 29 cycle Fusion 5C profiles analysed on a 3500 CE instrument with a 1.2 kV/15 s injection protocol within the ISP Laboratory are given in Figure 2 to Figure 5. All settings remain unchanged from STRmix V2.8.

GENERAL	LOCI	STUTTERS	IMPORT	
Kit Type				
Fusion		•		
Size Regression File				
Fusion_SizeRegressio	IN.CSV			· · ·
VARIANCE				
Allelic Variance		Loci	is Amplification Variance	Minimum Variance Factor
9.635, 1.161		0.01	11	0.5
Variance Minimisation	Parameter			
1,000				
DROP-IN				
Drop-in Cap		Drop	-in Rate Parameter	Drop-in Distribution Parameters
250		0.00	007	Uniform
ADDITIONAL THRESH	OLDS			
Maximum Degradation		Deg	radation Start Point	Saturation Threshold
0.01			Use Smallest Peak	30,000

Figure 2: General settings for the Fusion 5C STRmix™ V2.9.1 kit

GENERAL	LOCI	STUTTERS	IMPORT
BACK STUTTER			
Stutter Enable	ed.	Positio -1, 0	n Relative to Parent
Inversely Proportion Observed Height o		•	
Maximum Stutter Ra		Variano 1.522,	ce 13.693
Applicable Loci All Loci			
Stutter Regression I Stutter Idaho_Fusi		Stutter_Back Stutter	Regression.txt
Stutter Exceptions F Stutter Idaho_Fusi		Stutter_Back Stutter	Exceptions.csv

Figure 3: Back stutter settings for the Fusion 5C STRmix™ V2.9.1 kit

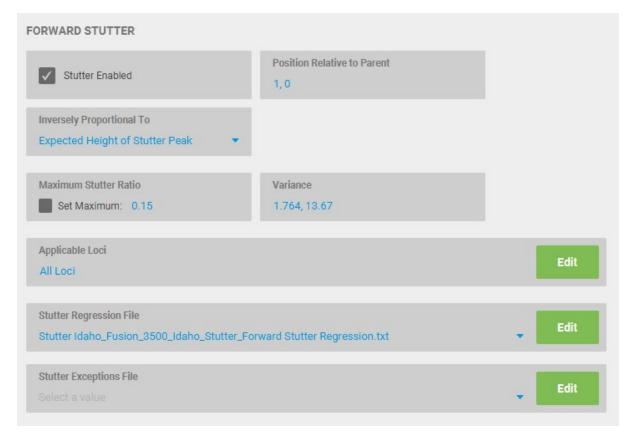


Figure 4:Forward stutter settings for the Fusion 5C STRmix™ V2.9.1 kit

Upgrade of STRmix[™] to V2.9.1 ISP Laboratory, Oct 2022

GENERAL	LOCI	STUTTERS	IMPORT		
LOCUS NAME		GENDER?	REPEAT LENGTH	IGNORE?	DETECTION THRESHOLD
AMEL		\checkmark			
D3S1358			4		70
D1S1656			4		70
D2S441			4		70
D10S1248			4		70
D13S317			4		70
Penta E			5		70
D16S539			4		70
D18S51			4		70
D2S1338			4		70
CSF1P0			4		70
Penta D			5		70
TH01			4		70
AWv			4		70
D21S11			4		70
D7S820			4		70
D5S818			4		70
TPOX			4		70
DYS391			4	\checkmark	70
D8S1179			4		70
D12S391			4		70
D19S433			4		70
FGA			4		70
D22S1045			3		70

Figure 5: Analytical Threshold information for the Fusion 5C 3500 STRmix™ V2.9.1 kit

Performance check of updated parameters

A suggested performance check for an upgrade from V2.8 to V2.9.1 involves the interpretation of about fifty profiles of varying quality (template) and varying numbers of contributors. A suggested plan is:

- a) An unambiguous (high template) single source profile where weights = 1 for a single genotype will result in identical point LRs (including relative propositions) using the same allele frequency database and theta values.
- b) Mixed DNA profiles that contain multiple low level (non-assumed) contributors, where multiple genotype sets with dropped alleles for both contributors are being considered. This will result in different but similar LRs due to the expected variability within the MCMC, and changes to the calculations in v2.9.1.
- c) Mixed DNA profiles where one contributor is a trace or minor contributor with alleles in stutter positions (back, forward, double back etc.) of the major contributor should be interpreted and the results be intuitive.
- d) LR from Previous calculations for deconvolutions carried out in previous versions should result in the same LR.

Section A

An unambiguous (high template) single source profile where weights = 1 for a single genotype will result in identical point LRs (including relative propositions) using the same allele frequency database and theta values.

Fusion 5C sample DNA1_500pg.hid_EV which had been previously interpreted in STRmix[™] V2.8 and had an LR assigned using the FBI_Extended_Cauc allele frequencies with a theta value of 1%, was reinterpreted in STRmix[™] V2.9.1 with the same allele frequency database and theta value.

The propositions considered were:

 H_p : The DNA originates from the person of interest

*H*_d: The DNA originates from an unknown, unrelated individual

The sub-source LRs were identical (Figure 6). The HPD LRs are slightly different and this expected due to differences in the seed that the two interpretations were run with.

	FBI_EXTENDED_CAUC 0.01b(1.0, 1.0)					FBI_EXTENDED_CAUC		
					0.01b(1.0, 1.0)			
LOCUS	Pr(E Hp)	Pr(E Hd)	LR	LOCUS	Pr(E Hp)	Pr(E Hd)	LR	
D3S1358	1	8.4886E-2	1.1780E1	D3S1358	1	8.4886E-2	1.1780E	
D1S1656	1	2.4306E-2	4.1142E1	D1S1656	1	2.4306E-2	4.1142	
D2S441	1	1.6511E-1	6.0565E0	D2S441	1	1.6511E-1	6.0565	
D10S1248	1	9.9137E-2	1.0087E1	D10S1248	1	9.9137E-2	1.0087	
D13S317	1	3.6579E-2	2.7338E1	D13S317	1	3.6579E-2	2.7338	
Penta E	1	1.7504E-2	5.7129E1	Penta E	1	1.7504E-2	5.7129	
D16S539	1	1.1580E-1	8.6353E0	D16S539	1	1.1580E-1	8.6353	
D18S51	1	4.0035E-2	2.4978E1	D18S51	1	4.0035E-2	2.4978	
D2S1338	1	9.9769E-3	1.0023E2	D2S1338	1	9.9769E-3	1.0023	
CSF1PO	1	1.9220E-3	5.2029E2	CSF1PO	1	1.9220E-3	5.2029	
Penta D	1	5.2949E-2	1.8886E1	Penta D	1	5.2949E-2	1.8886	
TH01	1	1.4051E-1	7.1167E0	TH01	1	1.4051E-1	7.1167	
vWA	1	1.1350E-1	8.8106E0	VWA	1	1.1350E-1	8.8106	
D21S11	1	2.2967E-2	4.3541E1	D21S11	1	2.2967E-2	4.3541	
D7S820	1	7.0180E-2	1.4249E1	D7S820	1	7.0180E-2	1.4249	
D5S818	1	2.8702E-1	3.4841E0	D5S818	1	2.8702E-1	3.4841	
ТРОХ	1	2.8027E-1	3.5680E0	TPOX	1	2.8027E-1	3.5680	
DYS391				DYS391				
D8S1179	1	1.4076E-1	7.1043E0	D8S1179	1	1.4076E-1	7.1043	
D12S391	1	3.1127E-2	3.2127E1	D12S391	1	3.1127E-2	3.2127	
D19S433	1	1.9729E-1	5.0686E0	D19S433	1	1.9729E-1	5.0686	
FGA	1	1.8871E-2	5.2990E1	FGA	1	1.8871E-2	5.2990	
D22S1045	1	2.3188E-1	4.3126E0	D22S1045	1	2.3188E-1	4.3126	
SUB-SUB-SOURCE LR			1.2560E27	SUB-SUB-SOURCE LR			1.2560	
SUB-SOURCE LR			1.2560E27	SUB-SOURCE LR			1.2560	
99% 1-SIDED LOWER HPD INTERVAL			3.2906E26	99% 1-SIDED LOWER HPD INTERVAL			3.0372	
FRmix V2.8				STRmix V2.9.1				

Figure 6: Interpretation of a single source Fusion 5C unambiguous profile in STRmix™ versions 2.8 and 2.9.1

Sections B and C

Mixed DNA profiles that contain multiple low level (non-assumed) contributors, where multiple genotype sets with dropped alleles for both contributors are being considered. This will result in different but similar LRs due to the expected variability within the MCMC, and changes to the calculations in v2.9.1.

Mixed DNA profiles where one contributor is a trace or minor contributor with alleles in stutter positions (back, forward, double back etc.) of the major contributor should be interpreted and the results be intuitive.

All mixed DNA profiles (143 Fusion 5C) that had previously been interpreted by ISP in STRmix[™] V2.8 were reinterpreted in STRmix[™] V2.9.1.

Profiles contained multiple low level (non-assumed) contributors, where multiple genotype sets with dropped alleles for both contributors were being considered. Profiles were also included that contained at least one trace or minor contributor with alleles in stutter positions of the major contributor.

Likelihood ratios were assigned to true- and non-contributors by searching each deconvolution against a database that contained the DNA profiles of the known donors as well as 200 non-contributor profiles. The non-contributor profiles were simulated from the FBI Caucasian allele frequencies. An LR was assigned for each database individual considering the following propositions:

 H_p : The DNA originates from the database individual and N-1 unknown, unrelated individuals

 H_d : The DNA originates from N unknown, unrelated individuals

Where *N* is the experimentally designed NOC. As per the LRs assigned in STRmix^M V2.8, STRmix^M V2.9.1 LRs were assigned using the FBI Caucasian allele frequencies with θ = 0.01 and the sub-source *LR* used as the point of comparison.

Plots of log(*LR*) STRmix V2.8 v log(*LR*) STRmix V2.91 for known contributors to mixtures using the Fusion 5C kit are shown in Figure 7. All results were concordant.

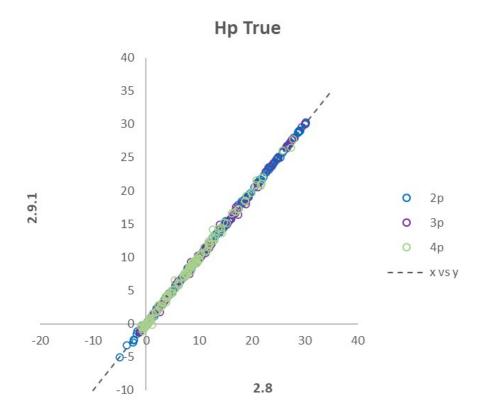


Figure 7: A plot showing the log(LR) of known donors in STRmix V2.8 v V2.9.1 using the same mixtures interpreted in each version of the software for the Fusion 5C kit.

Figure 8 shows the comparison of log(LR)s for non-contributors to the Fusion 5C mixtures interpreted in STRmix[™] V2.8 and V2.9.1. As expected we see more variance in the LRs of non-contributors than we saw in the LRs of contributors. This is due to the increase of variation of gentoypes given low weights (i.e. genotypes that get given little weight in the MCMC may not be given any weight if the sample was to be reinterpreted. Conversely, genotypes with large weights should be accepted with a a similar weight if the sample were to be reinterpreted). These results are as expected.

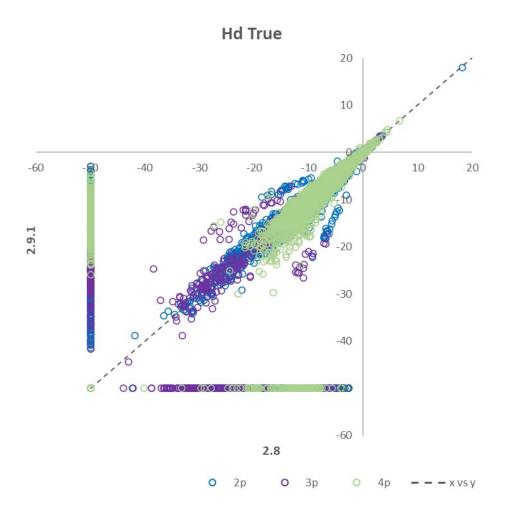
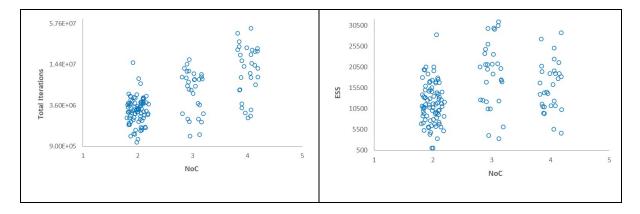
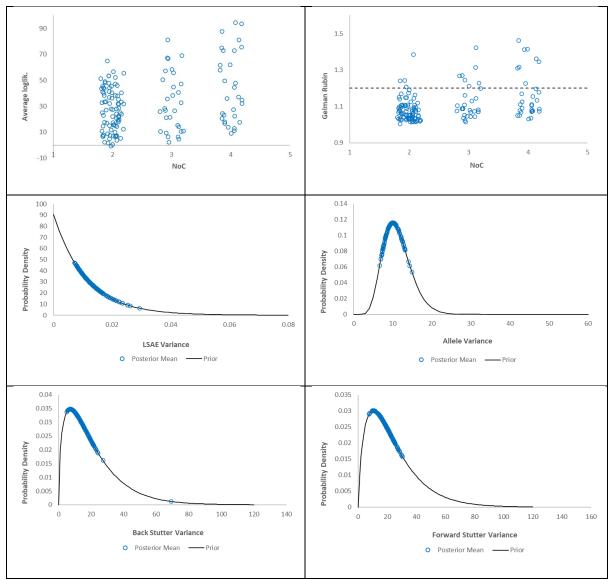




Figure 8: Comparisons of log(LR)s for non-contributors in STRmix V2.8 and V2.9.1 using the Fusion 5C kit

The diagnostics for the Fusion 5C mixtures interpreted in STRmix^{IM} V2.9.1 are in Figure 9. All results are within expectations. Note that there is one outlier in the back stutter posterior mean plot (sample 10.5.1_C1 $k^{2\sim}$ 69). This outlier was also observed in the STRmix^{IM} V2.8 validation and is due to a missing stutter peak at D22S1045 and is correctly identified on the STRmix^{IM} report under Evidence Peak Issues.

Figure 9:Diagnostics from STRmix V2.9.1 interpretations of Fusion 5C profiles

Section D

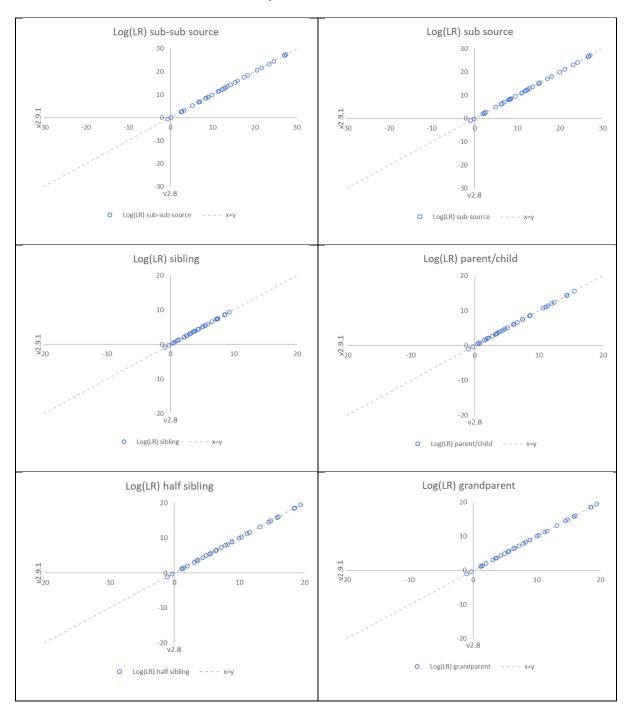
LR from Previous interpretations on deconvolutions carried out in previous versions should result in the same LR.

12 mixtures that had previously been interpreted in STRmix[™] V2.8, had LRs assigned to each contributor using the LR from Previous function in STRmix[™] 2.9.1. Specifically, six two-person, three three-person and four four-person mixtures.

The propositions considered were:

 H_p : The DNA originates from the POI and N-1 unknown, unrelated individuals

 H_d : The DNA originates from N unknown, unrelated individuals


And

 H_p : The DNA originates from the POI and N-1 unknown, unrelated individual

*H*_{*r*}: The DNA originates from a nominated relative of the POI and *N*-1 unrelated individual

Where the each of the known contributors in each mixture was considered the POI in turn, resulting in 33 *LR*s in total. As per the LRs assigned in STRmix^M V2.8, STRmix^M V2.9.1 LRs were assigned using the FBI Caucasian allele frequencies with $\theta = 0.01$.

The resulting LRs were compared to the LRs obtained in STRmix[™] V2.8. The results are in Figure 10 below. All LRs were identical. This is the expected result.

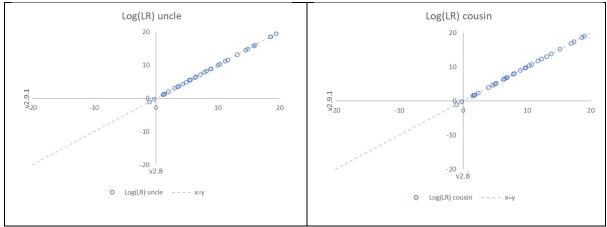


Figure 10: Comparison of STRmix^m 2.8 log(LR)s and STRmix^m 2.9.1 log(LR)s. The top pane is considering an unrelated individual under H_d and the remaining panes are considering a relative of the POI under H_d. The nominated relationship is in the title.

Conclusion

This document describes the upgrade and performance check of STRmix[™] V2.9.1 using Fusion 5C PCR kits within the ISP Laboratory. It has been shown that it is suited for its intended use for the interpretation of profiles generated from crime scene samples.

Signatures

Jayls K Manuk

 $\mathsf{ISP}\ \mathsf{Laboratory}\ \mathsf{STRmix}^{\texttt{m}}\ \mathsf{implementation}\ \mathsf{manager}$

ISP Laboratory Technical Leader

This work has been reviewed and it has been determined that STRmix[™] V2.9.1 is suitable for its intended use for interpretation of crime profiles within the ISP Laboratory. The project work has met the validation requirements as required by A2LA and FBI QAS.